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1 Introduction

This project is a study of Lipschitz continuous functions in real algebraic geometry. These
maps are characterised by their bounded rate of change. This property not only provides a
natural framework for studying the metric behaviour of functions and sets, but also plays
a crucial role in understanding the structure of singularities, knots, and semialgebraic
varieties.

In Chapter 2, we establish foundations by investigating the theory of Lipschitz and
Hölder continuous maps. We define these maps and explore their key properties such as
boundedness, their behaviour under composition and addition, as well as the concept of
bi-Lipschitz equivalence. This chapter lays the groundwork for our later investigations.

In Chapter 3 we introduce fundamental concepts from knot theory. We specifically
focus on their role in real algebraic geometry. We define knots and links, discuss knot
diagrams, and also detail Reidemeister moves, which generate ambient isotopies. These
topics provide a base for the study of knots from a Lipschitz perspective.

Chapter 4 looks at semialgebraic sets and semialgebraic maps. After defining these
sets and presenting examples, we examine some important properties. We investigate the
concept of Lipschitz normal embeddings which is essential for understanding the geometry
of semialgebraic sets.

Chapter 5 is dedicated to the study of β-Hölder triangles and β-horns. These serve as
models for the behaviour of real algebraic varieties near singular points. We introduce the
standard β-Hölder triangle and prove that it is normally embedded. This analysis is then
extended to the more complex geometry of β-horns, which play a key role in describing local
Lipschitz geometry in higher dimensions. We also look at the E8 singularity, an example
of an isolated singularity in real algebraic geometry. We introduce and study the concept
of distortion for embedded curves and knots. We derive lower bounds for the distortion of
closed curves and analyse the implications of these bounds.

Chapter 6 looks at the role of tangent cones in Lipschitz geometry. We prove that
under the hypothesis of Lipschitz normal embedding, the tangent cone of a set inherits
this property.

Finally, Chapter 7 states and proves the results of Universality Theorem, which links
Lipshchitz geometry with surface singularities and knots.

Through these chapters, we demonstrate how Lipschitz methods provide a framework
to tackle problems in real algebraic geometry and in part, they can be used in the study
of singularities through the analysis of knots and conical structures.
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2 Lipschitz Analysis

2.1 Lipschitz Maps

Let f : X → Y be a function between two metric spaces (X, dX) and (Y, dY )

Definition 2.1. Let α ∈ R≥0 be a positive real number. The mapping f : X → Y is said
to be α-Hölder continuous if there exists a L ≥ 0 such that

dY (f(a), f(b)) ≤ L(dX(a, b))
α

for all a, b ∈ X.

When α = 1 we have the natural condition that is called Lipschitz continuity.

Definition 2.2. f : X → Y is Lipschitz continuous if there exists a K ≥ 0, known as a
Lipschitz constant of f , such that

dY (f(a), f(b)) ≤ KdX(a, b)

for all a, b ∈ X.

Definition 2.3. A K-Lipschitz function is a Lipschitz function f with Lipschitz constant
K.

Definition 2.4. The Lipschitz norm is the minimum of the Lipschitz constants. We denote
this smallest possible Lipschitz constant of f by:

LIP(f) = inf{K : d(f(a), f(b)) ≤ Kd(a, b) for all a, b ∈ X}.

Alternatively, we can say the Lipschitz norm ∥f∥Lip of f : X → Y is the supremum of the
absolute difference quotients

d(f(a), f(b))

d(a, b)

for a ̸= b in X.

Definition 2.5. The map f : X → Y is short if its Lipschitz norm is at most 1. It is a
contraction mapping if its Lipschitz norm is strictly less than 1.
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2.2 Lipschitz Properties

Theorem 2.6. Lipschitz functions are uniformly continuous.

Proof. Let f : X → Y be a map between two metric spaces (X, dX) and (Y, dY ) with
Lipschitz constant K > 0. Let ϵ > 0. If x1, x2 ∈ X with d(x1, x2) <

ϵ
K

then we have,

dY (f(x1), f(x2)) ≤ Kd(x1, x2) < ϵ

Thus, f is uniformly continuous.

Remark 2.7. The converse is not true. Not all uniformly continuous functions are Lip-
schitz. Consider the function

√
· : [0, 1] → [0, 1]. This function is continuous as it is the

inverse of the continuous function x 7→ x2 defined on the interval [0, 1].
√
· is uniformly

continuous since [0, 1] is a closed and bounded and hence compact set.
However, if x > 0, then

|
√
x−

√
0|

|x− 0|
=

√
x

x
=

1√
x
.

As x→ 0+, this quotient is unbounded, and therefore
√
· is not Lipschitz.

Theorem 2.8. The composition of Lipschitz maps are Lipschitz.

Proof. Let f : R → R and g : R → R be Lipschitz functions. Let Kf and Kg be
the Lipschitz constants of f and g respectively. Thus, |f(x) − f(y)| ≤ Kf |x − y| and
|g(x)− g(y)| ≤ Kg|x− y| for any x, y ∈ R. Then,

|(f ◦ g)(x)− (f ◦ g)(y)| = |f(g(x))− f(g(y))|

≤ Kf |g(x)− g(y)|

≤ KfKg|x− y|

so f ◦ g is Lipschitz with constant K = KfKg.

Theorem 2.9. The sum of Lipschitz maps are Lipschitz.

Proof. With Kf and Kg as above,

|(f + g)(x)− (f + g)(y)| = |f(x) + g(x)− f(y)− g(y)|

= |f(x)− f(y) + g(x)− g(y)|

≤ |f(x)− f(y)|+ |g(x)− g(y)|

≤ Kf |x− y|+Kg|x− y|

= (Kf +Kg)|x− y|

so f + g is Lipschitz with constant K = Kf +Kg.
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2.3 Boundedness

We recall the definition of a bounded function.

Definition 2.10. A function f : X → R is bounded if there is a constant M > 0 such that
|f(x)| ≤M for all x ∈M .

Theorem 2.11. Any Lipschitz function f : [a, b] → R defined on an interval of the form
[a, b] is a bounded function.

Proof. For any x ∈ [a, b],

|f(x)− f(a)| ≤ K|x− a| ≤ K|b− a|

and

|f(x)| = |f(x)− f(a) + f(a)| ≤ |f(x)− f(a)|+ |f(a)| ≤ K|b− a|+ |f(a)|

So, take M = K|b− a|+ |f(a)|, and thus f is bounded.

Theorem 2.12. An everywhere differentiable function f : R → R is Lipschitz continuous,
with K = sup |f ′(x)| if and only if it has a bounded first derivative.

Proof. Assume that f is a K-Lipschitz function. So |f(x + h)− f(x)| ≤ K|h|, ∀x, h ∈ R,
which is equivalent to

∣∣∣f(x+h)−f(x)
h

∣∣∣ < K. By taking the limit, |f ′(x)| ≤ K.

For the converse, we use the Mean Value Theorem. Let x, y ∈ R, there exists c ∈ [x, y]
such that f(x)− f(y) = (x− y)f ′(c) and now use the fact that |f ′(c)| ≤ K.

Example 2.13. Consider the function f : R → R defined by f(x) =
√
x2 + 3. Thus,

f ′(x) = x√
x2+3

and we have sup |f ′(x)| = 1. We set K = 1 and see that f(x) is Lipschitz.

Similarly, the continuously differentiable sine function g(x) = sin(x) has derivative g′(x) =
cos(x). Thus K = sup |g′(x)| = sup | cos(x)| = 1 and g(x) is Lipschitz continuous.

Remark 2.14. f : R → R given by f(x) = x2 is not Lipschitz. Fix x = 0, and consider a
sequence tending to ∞, say {n}. Then

|f(n)− f(0)|
|n− 0|

=
n2

n
= n

which cannot be bounded by any fixed Lipschitz constant K.

2.4 Bi-Lipschitz Functions

Definition 2.15. Let f : X → Y be a function between two metric spaces (X, dX) and
(Y, dY ). f is said to be bi-Lipschitz if f is Lipschitz, injective and its inverse is Lipschitz.
When f is bi-Lipschitz and surjective, we say that X and Y are bi-Lipschitz equivalent.
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Theorem 2.16. A function f : X → Y is bi-Lipschitz if and only if there exists some
K > 0 such that

1

K
d1(x1, x2) ≤ d2 (f(x1), f(x2)) ≤ Kd1(x1, x2)

for all x1, x2 ∈ X.

Proof. Suppose that f : X → Y is bi-Lipschitz. Thus, f is Lipschitz with constant K1 and
f−1 is Lipschitz with constant K2. Let K = max{K1, K2}. Then, for any x1, x2 ∈ X, we
have

d2(f(x1), f(x2)) ≤ K1d1(x1, x2) ≤ Kd1(x1, x2)

Similarly,

d1(x1, x2) = d1
(
f−1(f(x1)), f

−1(f(x2))
)
≤ K2 d2(f(x1), f(x2)) ≤ K d2(f(x1), f(x2))

Dividing the latter by K and combining, we see that

1

K
d1(x1, x2) ≤ d2(f(x1), f(x2)) ≤ Kd1(x1, x2)

2.5 Extension of Lipschitz Mappings

Theorem 2.17. Assume A ⊂ Rn, and let f : A → Rm be Lipschitz continuous with
Lipschitz constant K. Then there exists a Lipschitz continuous function f̃ : Rn → Rm with
Lipschitz constant K̃ such that

1. f̃ = f on A,

2. K̃ ≤
√
mK.

Proof. 1. Assume f : A→ R and then define f(x) := infa∈A{f(a) +K|x− a|} for x ∈ Rn.
If b ∈ A, then we have that f(b) = f(b). We see that for all a ∈ A, f(a)+K|b− a| ≥ f(b),
while clearly f(b) ≤ f(b).
For any x, y ∈ Rn, we have that f(x) ≤ infa∈A{f(a)+K(|y−a|+|x−y|)} = f(y)+K|x−y|.
Similarly, f(y) ≤ f(x) +K|x− y|.
2. In the general case where f : A → Rm, f = (f 1, . . . , fm), we define f := (f 1, . . . , fm).
Then we have |f(x)− f(y)|2 =

∑m
i=1 |f i(x)− f i(y)|2 ≤ m(K)2|x− y|2.

2.6 Arzelà–Ascoli Theorem

We recall the definitions of a uniformly bounded sequence of functions and a uniformly
equicontinuous sequence of functions before we examine the Arzelà–Ascoli Theorem.

9



Definition 2.18. A sequence {fn}n∈N of continuous functions on an interval I = [a, b] is
uniformly bounded if there exists a number M such that

|fn(x)| ≤M

for every function fn ∈ {fn}n∈N and every x ∈ [a, b].

Definition 2.19. The sequence is said to be uniformly equicontinuous if, for every ε > 0,
there exists a δ > 0 such that

|fn(x)− fn(y)| < ε

whenever |x− y| < δ for all functions fn in the sequence.

We first cover the the general theorem before generalising for Lipschitz functions.

Theorem 2.20. (Arzelà-Ascoli). Let {fn}n∈N be a sequence of real-valued continuous
functions defined on a closed and bounded interval [a, b] of the real line. If this sequence is
uniformly bounded and uniformly equicontinuous, then there exists a subsequence {fnk

}k∈N
that converges uniformly.

Proof. Let I = [a, b] ⊂ R be a closed and bounded interval. If F is an infinite set of func-
tions f : I → R which is uniformly bounded and equicontinuous, then there is a sequence
fn of elements of F such that fn converges uniformly on I.
Let {fn} be any sequence in F . We will show that there exists a uniformly convergent
subsequence. First, fix a countable set {xi}i∈N. Now F is uniformly bounded so the set of
points {f(x1)}f∈F is bounded. Thus by Bolzano-Weierstrass theorem, there exists a subse-
quence {fn1} of functions in F such that {fn1(x1)} converges. Similarly, for {fn1(x2)} there
exists a subsequence {fn2} of {fn1} such that {fn2(x2)} converges. Continuing inductively,
we obtain a nested sequence of subsequences such that for every k ≥ 1, {fnk

} converges
at x1, x2...xk. We then form a diagonal subsequence {fm} where the mth term fm is the
mth term in the mth subsequence {fnm}. By construction, fm converges at every rational
point of I. Therefore, for ε > 0 and rational xk in I, there exists an integer N = N(ε, xk)
such that

|fn(xk)− fm(xk)| <
ε

3
, n,m ≥ N

F is equicontinuous, therefore, for this fixed ε and for every x in I, there exists an open
interval Ux containing x such that

|f(s)− f(t)| < ε

3

for all f ∈ F and all s, t in I such that s, t ∈ Ux. The collection of intervals Ux, x ∈ I, forms
an open cover of I. Using the Heine–Borel theorem on the closed and bounded I, we can
see that I is compact. This means that this covering admits a finite subcover U1, . . . , UJ .
Now there exists a natural number K such that each open interval Uj, 1 ≤ j ≤ J , contains
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a rational xk with 1 ≤ k ≤ K. Finally, for any t ∈ I, there exist j and k so that t and xk
belong to the same interval Uj. For this k,

|fn(t)− fm(t)| ≤ |fn(t)− fn(xk)|+ |fn(xk)− fm(xk)|+ |fm(xk)− fm(t)|

<
ε

3
+
ε

3
+
ε

3
= ε

for all n,m > N = max{N(ε, x1), . . . , N(ε, xK)}. Therefore, the sequence {fn} is uniformly
Cauchy and thus converges uniformly to a continuous function, as claimed.

We can now generalise Arzelà-Ascoli Theorem to a family of Lipschitz functions:

Corollary 2.21. If {fn} is a uniformly bounded sequence of real-valued functions on [a, b]
such that each fn is Lipschitz continuous with the same Lipschitz constant K:

|fn(x)− fn(y)| ≤ K|x− y|

for all x, y ∈ [a, b] and all fn, then there exists a subsequence that converges uniformly on
[a, b].

Theorem 2.22. Let {fn} be a sequence of uniformly continuous functions from (X, dX)
into (Y, dY ) If each fn is a Lipschitz function with constants Kn and supnKn < ∞, then
f is a Lipschitz function.

Proof. Suppose the fn’s are Lipschitz functions with constantKn. Then we have dY (fn(x), fn(y)) ≤
KndX(x, y) for all x, y ∈ X. LetK = supnKn. PickN large enough such that dY (f(x), fN(x)) <
ε/2 for all x ∈ X. Then, we have

dY (f(x), f(y)) ≤ dY (f(x), fN(x)) + dY (fN(x), fN(y)) + dY (fN(y), f(y))

< ε/2 +KNdX(x, y) + ε/2

≤ ε+KdX(x, y)

So we have that dY (f(x), f(y)) ≤ KdX(x, y). Thus, f is a Lipschitz function.

Example 2.23. We can illustrate the necessity of the uniform equicontinuity condition in
the Arzelà-Ascoli theorem with the following example. Consider the family F = {fn}∞n=1

of functions fn : [0, 1] → R defined by

fn(x) = sin(nx)

Each fn is Lipschitz with Lipschitz constant Kn = n. The Lipschitz constants are un-
bounded. Since | sin(nx)| ≤ 1, the family F is uniformly bounded. The family F is not
equicontinuous on [0, 1]. For any δ > 0, choose x = 0 and y = δ. Then

|fn(x)− fn(y)| = | sin(0)− sin(nδ)| = | sin(nδ)| ≤ nδ

As n → ∞, nδ → ∞ unless δ = 0. Therefore, for any fixed ε > 0, we cannot find a δ > 0
such that |fn(x)− fn(y)| < ε for all n.
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2.7 Differentiability of Lipschitz Functions

We recall the definition of differentiability:

Definition 2.24. The function f : Rn → Rm is differentiable at x ∈ Rn if there exists a
linear mapping L : Rn → Rm such that

lim
y→x

|f(y)− f(x)− L(y − x)|
|y − x|

= 0

Remark 2.25. Lipschitz continuous functions do not have to be everywhere differentiable.
For example, consider f(x) = |x| on the reals. This function is not differentiable at zero
because

lim
x→0+

f(x)− f(0)

x
= lim

x→0+

x

x
= 1 ̸= −1 = lim

x→0−

−x
x

= lim
x→0−

f(x)− f(0)

x

However, f is Lipschitz with constant 1 which we prove as follows. Without loss of gen-
erality, we can assume x ≤ y since ||x| − |y|| = ||y| − |x|| and |x − y| = |y − x|, which
means we are free to exchange x and y. We thus have three cases.

1. If 0 ≤ x ≤ y, then ||y| − |x|| = y − x = |y − x|.

2. If x < 0 ≤ y, then ||y| − |x|| = y + x < y − x = |y − x|.

3. If x ≤ y < 0, then ||y| − |x|| = y − x = |y − x|.

This establishes ||y| − |x|| ≤ |y − x| in all cases, and so the function is Lipschitz.

12



Theorem 2.26. (Rademacher’s Theorem). Let U ⊂ Rn be open and f : U → Rm Lipschitz
continuous. Then f is differentiable at almost every x ∈ U .

We outline the proof from [11]

Proof. We begin by assuming without loss of generality that m = 1. Since differentiability
is a local property, we can further assume that f is Lipschitz continuous. Fix any unit
vector v ∈ Rn, and define the directional derivative along v by

Dvf(x) := lim
t→0

f(x+ tv)− f(x)

t
(x ∈ Rn)

whenever this limit exists.
Claim 1: The limit Dvf(x) exists for Ln-almost every x.
Because f is continuous, define the upper and lower directional derivatives by

Dvf(x) := lim sup
t→0

f(x+ tv)− f(x)

t
= lim

k→∞
sup

0<|t|<1/k, t∈Q

f(x+ tv)− f(x)

t

and

Dvf(x) := lim inf
t→0

f(x+ tv)− f(x)

t

Each of these functions is Borel measurable. Thus, the set where the directional derivative
fails to exist,

Av := {x ∈ Rn : Dvf(x) > Dvf(x)}
is Borel measurable.
Now, fix any x, v ∈ Rn and |v| = 1 as before, define the function φ : R → R by

φ(t) := f(x+ tv), t ∈ R

Since f is Lipschitz, φ inherits this property and is hence absolutely continuous. Thus φ
is differentiable L1 almost everywhere. Thus, for any line L parallel to v, we have that
H∞(Av ∩ L) = 0. By applying Fubini’s Theorem, we conclude that Ln(Av) = 0. Proving
Claim 1.
It follows from Claim 1 that

grad f(x) := (fx1(x), . . . , fxn(x))

exists for Ln-almost every x.
Claim 2: For Ln-almost every x, one has

Dvf(x) = v · grad f(x)

We let v = (v1, . . . , vn) and ζ ∈ C∞
c (Rn). Then∫

Rn

(
f(x+ tv)− f(x)

t

)
ζ(x) dx = −

∫
Rn

f(x)

(
ζ(x)− ζ(x− tv)

t

)
dx

13



We substitute t = 1/c so that∣∣∣∣f(x+ 1
c
v)− f(x)

1/c

∣∣∣∣ ≤ K|v| = K, where K is the Lipschitz constant of f

which, by the Dominated Convergence Theorem, gives∫
Rn

Dvf(x) ζ(x) dx = −
∫
Rn

f(x)Dvζ(x) dx.

= −
n∑

i=1

vi

∫
Rn

f(x)ζxi
(x) dx =

n∑
i=1

vi

∫
Rn

∂fxi
(x)ζ(x) dx =

∫
Rn

(v · grad f(x)) ζ(x) dx.

where we use Fubini’s Theorem and the absolute continuity of f on lines. Since ζ ∈ Cc(R⋉)
is arbitrary, it follows that Dvf(x) = v · grad f(x) Ln almost everywhere. Now select a
countable dense subset {vk}∞k=1 of ∂B(1) where B(1) is the closed ball with centre 1. For
each k, define

Ak := {x ∈ Rn : Dvkf(x) and grad f(x) exist and Dvkf(x) = vk · grad f(x)}

Let

A :=
∞⋂
k=1

Ak

We note that Ln(Rn \ A) = 0.
Claim 3: For every x ∈ A, the function f is differentiable.
Fix any x ∈ A. For any v ∈ ∂B(1), 0 ̸= t ∈ R, define

Q(x, v, t) :=
f(x+ tv)− f(x)

t
− v · grad f(x)

Given any v′ ∈ ∂B(1), we get

|Q(x, v, t)−Q(x, v′, t)| ≤
∣∣∣∣f(x+ tv)− f(x+ tv′)

t

∣∣∣∣+ |v − v′| · | grad f(x)|

≤ K|v − v′|+ | grad f(x)||v − v′| ≤ (
√
n+ 1)K|v − v′|. (*)

We fix ϵ > 0 and choose N sufficiently large so for v ∈ ∂B(1) then

|v − vk| ≤
ϵ

2(
√
n+ 1)K

(**)

for some k ∈ {1, 2, ..., N}. Moreover, for each vk, the convergence

lim
t→0

Q(x, vk, t) = 0

14



allows us to choose δ > 0 so that

|Q(x, vk, t)| < ε/2 (***)

for all 0 < |t| < δ and 1 ≤ k ≤ N . Thus, for any v ∈ ∂B(1) and 0 < |t| < δ, we obtain

|Q(x, v, t)| ≤ |Q(x, vk, t)|+ |Q(x, v, t)−Q(x, vk, t)| < ε

by (*), (**), (***). Given any y ∈ Rn, y ̸= x, let v := y−x
|y−x| such that y = x + tv for

t = |x− y|.
Then,

f(y)− f(x)− grad f(x) · (y − x) = f(x+ tv)− f(x)− tv · grad f(x) = o(t) = o(|y − x|),

as y → x.
This verifies that f is differentiable at x with differential Df(x) = grad f(x).

2.8 Lipschitz Continuity in Banach Spaces

Definition 2.27. Let (X, d) be a complete metric space, The map T : X → X is called a
contraction mapping if there exists 0 ≤ λ < 1 such that

d(T (x), T (y)) ≤ λd(x, y) for all x, y ∈ X.

Remark 2.28. A contraction mapping is a special case of a Lipschitz continuous function
with Lipschitz constant λ < 1. The Banach Fixed Point Theorem thus illustrates a powerful
application of Lipschitz functions in guaranteeing the existence and uniqueness of fixed
points.

Theorem 2.29. Let (X, d) be a complete metric space, and let T : X → X be a Lipschitz
continuous mapping with Lipschitz constant K < 1. Then T has a unique fixed point
x∗ ∈ X such that T (x∗) = x∗.

Proof. Pick any x0 ∈ X, define x1 = T (x0), and let xn+1 = T (xn). The sequence (xn) is
Cauchy.
Then, for any k, n ≥ 1,

d(xn, xn+k) ≤ d(xn, xn+1)+· · ·+d(xn+k−1, xn+k) =
k−1∑
i=0

d(xn+i, xn+i+1) =
k−1∑
i=0

d(fn+i(x1), f
n+i(x0))

Using the fact that T is contractive, we have

k−1∑
i=0

d(T n+i(x1), T
n+i(x0)) ≤

k−1∑
i=0

Kn+id(x1, x0) ≤ Knd(x1, x0)
∞∑
i=0

Ki =
Knd(x1, x0)

1−K
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For all ε > 0, we can find N > 0 such that

KNd(x1, x0)

1−K
< ε

Then for any m ≥ n ≥ N

d(xm, xn) ≤
Knd(x1, x0)

1−K
≤ KNd(x1, x0)

1−K
< ε

Therefore (xn) is a Cauchy sequence and converges to some x∗ ∈ X. T is continuous, so
we have

T (x∗) = lim
n→∞

T (xn) = lim
n→∞

xn+1 = x∗

To prove uniqueness let x and y be fixed points, then

d(x, y) = d(T (x), T (y)) ≤ Kd(x, y)

since 0 ≤ K < 1 which implies d(x, y) = 0, so x = y.

Example 2.30. Consider the function T : [0, 1] → [0, 1] defined by T (x) = 1
2
x. The

function T is Lipschitz continuous with Lipschitz constant K = 1
2
. Since K < 1, T has a

unique fixed point. Solving T (x) = x, we find x∗ = 0.

Definition 2.31. A normed vector space is a pair (X, ∥ · ∥), where X is a vector space and
∥ · ∥ is a map

∥ · ∥ : X → R, x 7→ ∥x∥

satisfying the following axioms:

1. ∥x∥ = 0 ⇐⇒ x = 0.

2. ∥λx∥ = |λ| · ∥x∥ for all λ ∈ K, x ∈ X.

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

The map ∥ · ∥ is called a norm on X and ∥x∥ is called the norm of x.

Definition 2.32. A Banach space is a normed vector space (X, ∥ · ∥) that is complete.

Below is the revised version of the theorem and its proof using the notation K consis-
tently:

—

Theorem 2.33. Let E be a Banach space, Ω ⊆ E an open set, and let I : Ω → E denote
the identity map. Let g : Ω → E be a Lipschitz continuous function with Lipschitz constant
K < 1. Define the mapping f = I + g and consider the set Ω′ = f(Ω). We aim to prove:

16



1. Ω′ is open, and for any x ∈ Ω with B(x, r) ⊆ Ω, we have B(f(x), r(1−K)) ⊆ Ω′.

2. f is a bi-Lipschitz homeomorphism from Ω onto Ω′.

3. The inverse f−1 is of the form I + h, where h : Ω′ → E is Lipschitz with constant
K

1−K
.

Proof. (1) Let x ∈ Ω and suppose that B(x, r) ⊆ Ω for some r > 0. We will show that

B(f(x), r(1−K)) ⊆ Ω′

Let y ∈ B(f(x), r(1−K)). Then

∥y − f(x)∥ < r(1−K)

Define the mapping T : B(x, r) → E by

T (z) = y − g(z)

We first show that T maps B(x, r) into itself. For any z ∈ B(x, r),

∥T (z)− x∥ = ∥y − g(z)− x∥
= ∥[y − f(x)] + [f(x)− x− g(z)]∥

Since f(x) = x+ g(x), it follows that f(x)− x = g(x). Hence,

∥T (z)− x∥ = ∥y − f(x) + g(x)− g(z)∥ ≤ ∥y − f(x)∥+ ∥g(x)− g(z)∥

Using the Lipschitz property of g,

∥T (z)− x∥ ≤ r(1−K) +K∥x− z∥ ≤ r(1−K) +Kr = r

Thus, T (z) ∈ B(x, r).
Next, for any z1, z2 ∈ B(x, r),

∥T (z1)− T (z2)∥ = ∥g(z2)− g(z1)∥ ≤ K∥z2 − z1∥

Since K < 1, T is a contraction on the complete metric space B(x, r). By the Banach
Fixed Point Theorem, there exists a unique z ∈ B(x, r) such that

z = T (z) = y − g(z)

It follows that
y = z + g(z) = f(z)

so y ∈ Ω′. As y was an arbitrary point in B(f(x), r(1−K)), we conclude that

B(f(x), r(1−K)) ⊆ Ω′

17



and hence Ω′ is open.
(2) To show that f is a bi-Lipschitz homeomorphism, we first prove that f is injective.
Suppose that f(x1) = f(x2) for some x1, x2 ∈ Ω. Then,

x1 + g(x1) = x2 + g(x2)

so that
x1 − x2 = g(x2)− g(x1)

Taking norms yields

∥x1 − x2∥ = ∥g(x2)− g(x1)∥ ≤ K∥x1 − x2∥

Since K < 1, it must be that ∥x1 − x2∥ = 0, hence x1 = x2.
Next, for any x1, x2 ∈ Ω,

∥f(x1)− f(x2)∥ = ∥(x1 + g(x1))− (x2 + g(x2))∥
= ∥x1 − x2 + g(x1)− g(x2)∥
≤ ∥x1 − x2∥+ ∥g(x1)− g(x2)∥
≤ ∥x1 − x2∥+K∥x1 − x2∥
≤ (1 +K)∥x1 − x2∥

Thus, f is Lipschitz with constant 1 +K.
Furthermore, using the reverse triangle inequality, we have:

∥f(x1)− f(x2)∥ = ∥x1 − x2 + g(x1)− g(x2)∥
≥ ∥x1 − x2∥ − ∥g(x1)− g(x2)∥
≥ ∥x1 − x2∥ −K∥x1 − x2∥
= (1−K)∥x1 − x2∥

Thus

∥x1 − x2∥ ≤ 1

1−K
∥f(x1)− f(x2)∥

This shows that the inverse mapping f−1 is Lipschitz with constant 1
1−K

.
Since f is continuous as the sum of continuous functions, injective, and both f and f−1

are Lipschitz, f is a bi-Lipschitz homeomorphism from Ω onto Ω′.
(3) Finally, we express the inverse mapping in the form I + h. For y ∈ Ω′, let z = f−1(y),
so that

y = f(z) = z + g(z)

Then,
z = y − g(z)

or equivalently,
f−1(y) = y − g(f−1(y))

18



where
h(y) = −g(f−1(y))

Thus, we have
f−1(y) = y + h(y)

For any y1, y2 ∈ Ω′ and note that

∥h(y1)− h(y2)∥ = ∥g(f−1(y2))− g(f−1(y1))∥
≤ K∥f−1(y2)− f−1(y1)∥

≤ K

1−K
∥y1 − y2∥

This proves that h is Lipschitz with constant K
1−K

.
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3 Knots

3.1 Introduction

Knots are fundamental objects in topology and geometry, representing embeddings of cir-
cles into three-dimensional spaces. In real algebraic geometry, knots can be studied as
real algebraic varieties, offering an algebraic perspective on their topological properties.
Lipschitz methods also offer a toolset for studying knots. They allow for the quantification
of the geometry of knots, particularly with the use of bi-Lipschitz equivalence.

3.2 Basic Concepts in Knot Theory

Definition 3.1. A knot is a smooth embedding of the circle S1 into R3, denoted as P :
S1 ↪→ S3.

Definition 3.2. A link L, is a finite union of pairwise nonintersecting knots. The number
of knots in the union comprising L is called the number of components of the link. A knot
is a link with one component.

Definition 3.3. Two mathematical knots are equivalent if one can be transformed into
the other. These transformations correspond to manipulations of a knotted string that do
not involve cutting it or passing it through itself.

Definition 3.4. Two links L1, L2 in S3 are equivalent if there exists an orientation-
preserving homeomorphism f : S3 → S3 such that f(L1) = L2.

This idea can be formalised through the notion of an isotopy.

Definition 3.5. A continuous family of homeomorphisms {Ht : R3 → R3}t∈[0,1] is called
an ambient isotopy if

1. H0 is the identity map on R3

2. For each t ∈ [0, 1], Ht is a homeomorphism

3. The map (x, t) 7→ Ht(x) is continuous

4. H1 ◦ k0 = k1

Definition 3.6. Two links L1, L2 in S3 are equivalent if there exists an ambient isotopy
between L1 and L2.
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3.3 Diagrams and Projections

Working directly with knots in R3 can be challenging to visualise. To simplify matters, we
use knot diagrams, which are planar representations of knots obtained via projection.

Definition 3.7. A projection π : R3 → R2 is regular for a knot k if the following conditions
are satisfied:

1. π ◦ k is an immersion except at a finite number of points called crossings.

2. The preimages of the crossing point at each crossing are transverse intersections.

3. There are no triple or higher-order crossings.

A crossing in a knot diagram is a place where the knot curve crosses, going over or under
– itself.

3.4 Simplest Knots

Below are images of the three simplest knots, which are those made with the least number
of crossings, along with their respective knot diagram.
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3.5 Reidemeister Moves

The Reidemeister moves are local transformations on knot diagrams that correspond to
ambient isotopies of knots in R3. They are fundamental in knot theory because they
provide a way to manipulate knot diagrams while preserving the knot type.

Type I Move (Twist/Untwist): Adds or removes a twist in a single strand.

Type II Move (Poke): Moves one strand completely over another, introducing or re-
moving two crossings.

Type III Move (Slide): Slides a strand over or under a crossing between two other
strands, changing the ordering at the crossing without introducing or removing cross-
ings.

Theorem 3.8. Two knot diagrams represent ambient isotopic knots if and only if they are
related by a finite sequence of Reidemeister moves of types I, II, and III.

Definition 3.9. A projection of a knot or link is tricolourable if every arc of the knot can
be coloured with one of three different colours such that:

1. At each crossing, either arcs of all three colours meet, or only arcs of a single colour
meet.

2. At least two colours are used.
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Remark 3.10. Tricolourability is invariant under Reidemeister moves. In other words,
if a given diagram of a knot is tricolourable, then every diagram of the same knot is
tricolourable

The above diagram shows the tricolourability of the trefoil knot.
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4 Semialgebraic Sets

4.1 Semialgebraic maps

Definition 4.1. A set X ⊂ Rn is called an algebraic set if there exists polynomial
functions fi : Rn → R for i = 1, . . . , k, such that

X = {x ∈ Rn | f1(x) = 0, . . . , fk(x) = 0}

Definition 4.2. A subset X ⊂ Rn is called a semialgebraic set if there exists polynomial
functions fi,j, gi,j : Rn → R for 1 ≤ i ≤ p and 1 ≤ j ≤ q, such that

X =

p⋃
i=1

q⋂
j=1

{x ∈ Rn | fi,j(x) = 0, gi,j(x) > 0}

Definition 4.3. Let A ⊂ Rm and B ⊂ Rn be two semi-algebraic sets. A mapping
f : A→ B is semi-algebraic if its graph

Graph(f) = {(x, f(x)) | x ∈ A} ⊂ Rm+n

is a semi-algebraic set in Rm+n.

Example 4.4. The absolute value is semialgebraic.

Remark 4.5. The following are properties of semialgebraic sets.

1. An algebraic set is semialgebraic.

2. Semialgebraic sets are finite unions of intervals and points in R.

3. If X, Y ⊂ Rn are semialgebraic sets, then X ∪ Y , X − Y , and X ∩ Y are
semialgebraic.

4. If X ⊂ Rn and Y ⊂ Rm are semialgebraic sets, then Z ⊂ Rn × Rm is a
semialgebraic set.

Theorem 4.6. Let x and y be two points of R⋗, U an open semi-algebraic set containing
the segment [x, y], and let f : U → Rl be a semi-algebraic function whose first order
derivative exist. Then

∥f(x)− f(y)∥ ≤ K∥x− y∥,

where K = sup{∥dfz∥ | z ∈ [x, y]}

Proof. Let
g(t) = f((1− t)x+ ty) for t ∈ [0, 1]

Then
∥g′(t)∥ ≤ K∥x− y∥ for t ∈ [0, 1]
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Let c > 0 and define

Ac = {t ∈ [0, 1] | ∥g(t)− g(0)∥ ≤ K∥x− y∥t+ ct}

This is a closed semi-algebraic subset of [0, 1] containing 0. It contains a largest element
t0. Suppose t0 ̸= 1. Then

∥g(t0)− g(0)∥ ≤ K∥x− y∥t0 + ct0

Since ∥g′(t0)∥ ≤ K∥x− y∥, we can find µ > 0 in R such that, if t0 < t < t0 + µ, then

∥g(t)− g(t0)∥ ≤ K∥x− y∥(t− t0) + c(t− t0)

Thus, for t0 < t < t0 + µ, we have

∥g(t)− g(0)∥ ≤ K∥x− y∥t+ ct

which contradicts the maximality of t0. Thus, 1 ∈ Ac for every c, which implies the
conclusion of the theorem.

Definition 4.7. An arc in Rn is a germ at the origin of a semialgebraic mapping
γ : [0, ε) → Rn such that ∥γ(t)∥ = t.

4.2 Lipschitz Normal Embeddings

Definition 4.8. Let X be a subset of Rn. We define the following metrics on X:

1. The outer metric:
dout(x, y) = ∥x− y∥

which is the Euclidean metric induced on X.

2. The inner metric:
din(x, y) = inf

γ∈Γ(x,y)
l(γ)

where Γ(x, y) is the set of rectifiable arcs γ : [0, 1] → X with γ(0) = x and γ(1) = y,
and l(γ) is the length of γ. This is the length of the shortest path in X connecting
x and y

We have that dout(x, y) ≤ din(x, y).

Definition 4.9. A semialgebraic set X is called Lipschitz Normally Embedded (LNE) if
the inner and outer metrics on X are equivalent. That is, there exists a constant K > 0
such that:

dout(x, y) ≤ din(x, y) ≤ K dout(x, y)

for all x, y ∈ X.
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Definition 4.10. A space X is locally Lipschitz normally embedded at x ∈ X if there
exists an open neighborhood U of x such that U is Lipschitz normally embedded. We say
that X is locally Lipschitz normally embedded if this condition holds for all x ∈ X.

Example 4.11. An example of a set that is not Lipschitz normally embedded is the real
curve defined by x3 − y2 = 0. In this case,

dout((t
2, t3), (t2,−t3)) = 2|t|3

but
din((t

2, t3), (t2,−t3)) = 2|t|2 + o(t2)

Then,

lim
t→0

din((t
2, t3), (t2,−t3))

dout((t2, t3), (t2,−t3))
= +∞

and hence there cannot exist a constant K > 0 satisfying

din(x, y) ≤ K dout(x, y)

x3 − y2 = 0
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Theorem 4.12. Let X be a connected, compact locally Lipschitz normally embedded
space. Then X is Lipschitz normally embedded.

Proof. For every x ∈ X, we let Ux be a Lipschitz normally embedded neighbourhood of
x. Also let Kx be a bi-Lipschitz constant. Thus if y ∈ X is very close to x, then we have

din(x, y) ≤ Kx dout(x, y)

Now consider the map

f(x, y) :=
din(x, y)

dout(x, y)
:M ×M → R

Let U ⊂M ×M be a small open tubular neighbourhood of the diagonal. This expression
implies that f is continuous on the compact set (M ×M) \ U and is locally bounded at
every point. Therefore, f is globally bounded on (M ×M) \ U and on U as well.

Theorem 4.13. Let X ⊂ Rn and Y ⊂ Rm, and let Z = X × Y ⊂ Rn+m. Z is Lipschitz
normally embedded if and only if X and Y are Lipschitz normally embedded.

Proof. (⇒): Assume X and Y are LNE with constants KX and KY , respectively. We
show Z is LNE. For points (x1, y1), (x2, y2) ∈ Z, the intrinsic distance in Z satisfies:

dZin ((x1, y1), (x2, y2)) ≤ dZin ((x1, y1), (x1, y2)) + dZin ((x1, y2), (x2, y2))

Restricting paths to slices {x1} × Y and X × {y2}, we bound each term

dZin ((x1, y1), (x1, y2)) ≤ dYin(y1, y2) ≤ KY ∥y1 − y2∥

dZin ((x1, y2), (x2, y2)) ≤ dXin(x1, x2) ≤ KX∥x1 − x2∥

Thus
dZin((x1, y1), (x2, y2)) ≤ KY d

Y
out(y1, y2) +KXd

X
out(x1, x2)

By definition
dZout((x1, y1), (x2, y2))

2 = dYout(y1, y2)
2 + dXout(x1, x2)

2

Therefore,
dZout((x1, y1), (x1, y2)) ≤ dZout((x1, y1), (x2, y2))

and
dZout((x1, y2), (x2, y2)) ≤ dZout((x1, y1), (x2, y2))

Combining these we get

dZin((x1, y1), (x2, y2)) ≤ (KY +KX)d
Z
out((x1, y1), (x2, y2))

as required.
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(⇐): For the other direction, we let p, q ∈ X, and consider any path γ : [0, 1] → Z such
that γ(0) = (p, 0) and γ(1) = (q, 0). Here γ(t) = (γX(t), γY (t)), where γX : [0, 1] → X and
γY : [0, 1] → Y are paths with γX(0) = p and γX(1) = q. Since l(γ) ≥ l(γX), we have

dXin(p, q) ≤ dZin((p, 0), (q, 0))

Z is Lipschitz normally embedded so there exists a constant K > 1 such that

dZin(z1, z2) ≤ K dZout(z1, z2)

for all z1, z2 ∈ Z. Also dZout((p, 0), (q, 0)) = dXout(p, q) as X is embedded in Z as X ×{0}, so

dXin(p, q) ≤ K dXout(p, q)

The same argument applies to Y .
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5 β-Horns

In the study of real algebraic geometry, β-Hölder triangles and β-Horns play a crucial
role in understanding the local structure of semialgebraic sets with controlled Hölder
regularity. A standard β-Horn is constructed as the union of semialgebraic β-Hölder
triangles sharing the same principal vertex. Formally, we write

Hβ =
⋃
i

T β
i

where each triangle T β
i is bounded by two boundary curves.

Definition 5.1. A standard β-Hölder triangle (β ≥ 1) is defined as

Tβ = {(x, y) ∈ R2 | y ≤ xβ, y ≥ 0, 0 ≤ x ≤ 1}
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β-Hölder triangles with varying values for β.

Theorem 5.2. A standard β-Hölder triangle (β ≥ 1) is normally embedded.

Proof. Let p = (xp, yp) and q = (xq, yq) be two arbitrary points in Tβ. By definition of Tβ,
we have

0 ≤ xp ≤ 1, 0 ≤ xq ≤ 1, yp ≤ xβp , yq ≤ xβq .

Without loss of generality, assume xp ≤ xq. To connect p and q, construct a simple three
segment path γ that lies entirely in Tβ: 1. Move from (xp, yp) to (xp, 0), 2. Move from
(xp, 0) to (xq, 0), 3. Move from (xq, 0) to (xq, yq).
The total length of this path is:

ℓ(γ) = |yp|+ |xq − xp|+ |yq| = yp + (xq − xp) + yq

Since Tβ includes all (x, y) such that 0 ≤ y ≤ xβ, this path is contained entirely within
Tβ. Using the fact that yp ≤ xβp and yq ≤ xβq , we bound ℓ(γ) as:

ℓ(γ) ≤ xβp + (xq − xp) + xβq

Since xp, xq ∈ [0, 1] and β ≥ 1, we know that

xβp ≤ 1 and xβq ≤ 1
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Thus ℓ(γ) ≤ 2 + (xq − xp) We have that dout(p, q) =
√
(xq − xp)2 + (yq − yp)2 Therefore,

clearly xq − xp ≤ dout(p, q) Using this, we have that

ℓ(γ) ≤ 2 + dout(p, q)

We require
ℓ(γ) ≤ K · dout(p, q)

which gives
2 + dout(p, q) ≤ K · dout(p, q)

for K large enough. In other words we choose K such that

K ≥ 2

dout(p, q)
+ 1

and thus the inequality is satisfied. Since the path γ lies entirely within Tβ, we conclude
that

din(p, q) ≤ ℓ(γ) ≤ K · dout(p, q)

Therefore Tβ is Lipschitz normally embedded.

Definition 5.3. The semialgebraic surface in R3 defined by

X = {(x, y, z) | (x2 + y2)q = z2p, z ≥ 0},

with β = p
q
≥ 1, is known as a β-Horn.

β-Horns with varying values for β.
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5.1 E8 singularity

Remark 5.4. The E8 singularity is an isolated singularity in real algebraic geometry,
given by the equation

x3 + y5 + z2 = 0

It cannot be decomposed into simpler singularities and plays a key role in understanding
the local structure of real algebraic surfaces.

Example 5.5. Let f : R3 → R, f(x, y, z) = x2 − y3 + z5, and X be the kernel of f i.e.

X = {(x, y, z) ∈ R3 | f(x, y, z) = 0}.

Let γ±(t) = (±t3/2, t, 0), t ∈ R, be the two branches of the curve X ∩ {z = 0}, and let β
be the curve defined by X ∩ {x = 0}. At t = 0 the common unit tangent vector to γ+

and γ− is (0, 1, 0). The tangent to the curve β at the origin is (0, 0, 1).
For any fixed t, and any arc C in X from γ−(t) to γ+(t), then C always intersects β. Let
this intersection point be Q = (0, ȳ, z̄) and we can assume Q is unique. We have

din(γ
−(t), γ+(t)) = inf

C
l(C),

where l(C) = l(C−) + l(C+), and C− and C+ are the arcs from γ−(t) and γ+(t) to Q,
respectively. Then we can see that

l(C) ≥ ∥γ−(t)−Q∥+ ∥γ+(t)−Q∥ = 2
√
t3 + (t− ȳ)2 + z̄5 ≈ t,

for ȳ, z̄ sufficiently small. We can then use the same argument that we used to show that
x2 − y3 = 0 is not locally normally embedded at the origin. This is

din(γ
−(t), γ+(t))

dout(γ−(t), γ+(t))
→ ∞

as t→ 0. The result then follows.

Plot of x2 − y3 + z5 = 0
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5.2 Distortion

Let γ be an embedded rectifiable closed curve in Rn of finite length L(γ). We can then
assume that γ : R/LZ → Rn is a Lipschitz parameterisation by arclength. We also let it
be that L = 2π.
For x, y ∈ γ as before dout(x, y) is the straight-line distance between them in Rn, and
din(x, y) the arclength distance between these two points along γ. This arclength distance
is always the shorter way around γ, so we have that din(x, y) ≯ L/2. Given any point p
on γ, there exists an opposite point p∗such that din(p, p

∗) = L/2.
Two points x, y along a knot K separate K into two complementary arcs, γxy (from x to
y) and γyx. We let ℓxy denote the length of γxy. Distortion contrasts the shorter arclength
distance

din(x, y) := min(ℓxy, ℓyx) ≤
ℓ(K)

2

with the straight-line distance |x− y| in R3.

Definition 5.6. The distortion between distinct points x and y on a curve γ is

δ(x, y) :=
din(x, y)

dout(x, y)
≥ 1

This quantity is a Lipschitz constant for the inverse of the map γ.
The distortion of γ is the supremum

δ(γ) := sup δ(x, y)

taken over all pairs of distinct points.

Theorem 5.7. Given any closed rectifiable curve γ ⊂ Rn, the distortion satisfies

δ(γ) ≥ π

2

Proof. Rescale to let L(γ) = 2π, and parameterise the curve by arclength s ∈ R/2πZ. For
the opposite points p and p∗ we have arclength d(p, p∗) = π. We wish to prove that for
some p, |p− p∗| ≤ 2. Because then δ(p, p∗) ≥ π/2 and then we are done.
Consider the new curve in Rn defined by

f(s) := p− p∗ = γ(s)− γ(s+ π)

Using the triangle inequality |f ′(s)| ≤ |γ′(s)|+ |γ′(s+ π)| = 2 almost everywhere, so f is
Lipschitz with Lipschitz constant at most two. Also f(s+ π) = −f(s) for all s.
We need to show that |f | ≤ 2 somewhere. For sake of contradiction suppose that this is
not the case. Then f lies outside the closed ball of radius two in Rn. Then any arc of f
from s to s+ π is an arc between opposite points in Rn that avoids this closed ball. Here,
the length exceeds the distance between opposite points on a sphere of radius two, which
is 2π.
But since the parameterisation of f has a constant of at most two, the length of this arc
is at most 2π, a contradiction.
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Example 5.8. The trefoil knot is Lipschitz normal embedded.

Proof. The trefoil knot KT is given by a smooth embedding

γ : [0, 2π] → R3

with parameterisation

γ(t) = (sin(t) + 2 sin(2t), cos(t)− 2 cos(2t),− sin(3t)) , t ∈ [0, 2π].

The functions sin(nt) and cos(nt) are smooth, ensuring that γ(t) is a C∞-embedding.
For points x = γ(t1) and y = γ(t2) on the knot, the intrinsic metric din(x, y) is the arc
length of the curve γ between γ(t1) and γ(t2)

din(x, y) =

∫ t2

t1

∥γ′(t)∥ dt

Let
∥γ′(t)∥min ≤ ∥γ′(t)∥ ≤ ∥γ′(t)∥max

Since ∥γ′(t)∥ is continuous on the compact interval [0, 2π], using Extreme Value Thereom
both ∥γ′(t)∥min > 0 and ∥γ′(t)∥max <∞ exist.
Consider the Euclidean distance ∥x− y∥ = ∥γ(t1)− γ(t2)∥.
Use the Mean Value Theorem for arc length,∫ t2

t1

∥γ′(t)∥ dt ≥
∫ t2

t1

∥γ′(t)∥min = ∥γ′(t)∥min ·
∫ t2

t1

1 dt

Thus

din(x, y) =

∫ t2

t1

∥γ′(t)∥ dt ≥ ∥γ′(t)∥min · |t2 − t1|

where |t2 − t1| is the parameter difference.
The Mean Value Theorem for γ(t) gives

γ(t2)− γ(t1) = γ′(t) · (t2 − t1)

for some t∈[t1, t2]. Taking the norm on both sides yields

∥γ(t2)− γ(t1)∥ = ∥γ′(t)∥ · |t2 − t1|

Since ∥γ′(t)∥ is continuous, it is bounded on the interval [t1, t2], so

∥γ′(t)∥ ≤ ∥γ′(t)∥max

Substituting this bound,

∥γ(t2)− γ(t1)∥ ≤ ∥γ′(t)∥max · |t2 − t1|
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Similarly,
∥γ(t2)− γ(t1)∥ ≥ ∥γ′(t)∥min · |t2 − t1| (*)

Thus, we establish that

dout(x, y) = ∥γ(t2)− γ(t1)∥ ≤ ∥γ′(t)∥max · |t2 − t1|

Thus
dout(x, y)

∥γ′(t)∥max

≤ |t2 − t1| ≤
din(x, y)

∥γ′(t)∥min

Again, use the definition of din(x, y)∫ t2

t1

∥γ′(t)∥ dt ≤
∫ t2

t1

∥γ′(t)∥max = ∥γ′(t)∥max ·
∫ t2

t1

1 dt

Thus,

din(x, y) =

∫ t2

t1

∥γ′(t)∥ dt ≤ ∥γ′(t)∥max · |t2 − t1|

Thus,
din(x, y)

∥γ′(t)∥max

) ≤ |t2 − t1| (**)

We combine (∗) and (∗∗) to get

din(x, y) ≤ ∥γ′(t)∥max · |t2 − t1| ≤ ∥γ′(t)∥max ·
dout(x, y)

∥γ′(t)∥min

Thus,

din(x, y) ≤
∥γ′(t)∥max

∥γ′(t)∥min

dout(x, y)

The arc length din(x, y) is bounded above by the straight-line distance multiplied by the
maximum Lipschitz constant of γ.
Thus,

din(x, y) ≤ Kdout(x, y)

where K = ∥γ′(t)∥max

∥γ′(t)∥min
is the Lipschitz constant for KT .
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The outer (solid line) and inner (dashed line) metric between points p1 and p2 on the
Trefoil

35



6 Cones

In Lipschitz geometry, cones provide a simplified model of a space near singularities,
revealing key metric and topological properties. Their analysis helps characterise how
spaces behave under Lipschitz transformations, especially offering insights into
singularities. We now state and prove the two main results from [12]

6.1 Tangent Cones

Let X ⊆ Rm be a set and p ∈ X.

Definition 6.1. Consider a sequence S = {tj}j∈N of positive real numbers satisfying
limj→∞ tj = 0. A vector v ∈ Rm is called a direction of X at p relative to S if there exists
a sequence {xj} ⊆ X \ {p} and j0 ∈ N such that ∥xj − p∥ = tj for all j ≥ j0, and

lim
j→∞

xj − p

tj
= v

The collection of all such directions at p relative to S is denoted DS
p (X).

Definition 6.2. We denote Z ⊂ Rm as the tangent cone of X at p if there exists a
sequence S = {tj}j∈N with tj → 0 such that

Z = {tv | v ∈ DS
p (X) and t ≥ 0}

When this cone is uniquely determined at p, it is called the tangent cone of X at p and
written as TpX.

Theorem 6.3. Let X ⊆ Rm, and let x0 ∈ X. If X is Lipschitz normally embedded and
has a unique tangent cone Tx0X, then Tx0X is also Lipschitz normally embedded.

Proof. Assume x0 coincides with the origin. Let K > 0 be the Lipschitz constant such
that

dX(x, y) ≤ K∥x− y∥ ∀x, y ∈ X

Fix δ > 0 and choose λ > K + 1 + δ. For x, y ∈ X with ∥x∥ = ∥y∥ = t, any path α
connecting x to y such that

length(α) ≤ dX(x, y) + δ∥x− y∥

must lie within the compact ball B[0, λt]. This follows because paths exiting this ball
have length at least 2(λ− 1)t and then

length(α) > (K + δ)∥x− y∥

Let v, w ∈ T0X with ∥v∥ = ∥w∥ = 1. We prove that

dT0X(v, w) ≤ K∥v − w∥
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Select sequences {xn}, {yn} ⊂ X with ∥xn∥ = ∥yn∥ = tn → 0, where xn/tn → v and
yn/tn → w. For every n, we let γn : [0, 1] → X be a path in X from xn to yn such that

length(γn) ≤ dX(xn, yn) + δ∥xn − yn∥

Define the scaled paths αn = γn/tn. Each αn is confined to B[0, λtn], and their lengths
satisfy

ℓn = length(αn) =
1

tn
length(γn) ≤

1

tn
dX(xn, yn) + δ

∥xn − yn∥
tn

≤ (K + δ)
∥xn − yn∥

tn

Since ∥xn−yn∥
tn

→ ∥v − w∥, we can see that {ℓn}n∈N is bounded. Passing to a subsequence,
assume ℓn ≤ ℓ = (K + δ)∥v − w∥+ 1. For each n, let α̃n : [0, ℓn] → X be a
reparametrisation by arc length of αn. Also we let βn : [0, ℓ] → X be the curve given by

βn(t) =

{
α̃n(t), if t ∈ [0, ℓn]

α̃n(ℓn), if t ∈ [ℓn, ℓ]

Each α̃n is parametrised by arc length so for every n ∈ N,

∥βn(s)− βn(t)∥ ≤ |s− t|, ∀s, t ∈ [0, ℓ]

The family {βn} is bounded and equicontinuous. By the Arzelà-Ascoli theorem, a
subsequence {βnk

} converges uniformly to a continuous curve α : [0, ℓ] → T0X.
For sufficiently large k,

length(βnk
) ≤ (K + δ)∥v − w∥+ δ

implying length(α) ≤ (K + δ)∥v − w∥+ δ. Thus dT0X(v, w) ≤ (K + δ)∥v − w∥+ δ. Since
δ was arbitrarily chosen, we see that dT0X(v, w) ≤ K∥v − w∥.
Finally, we prove that for any pair of vectors x, y ∈ T0X, their inner distance in the cone
T0X is at most (1 +K)∥x− y∥. We denote by dT0X the inner distance of T0X. If x = sy
for some s ∈ R, then the line segment connecting x and y is contained in T0X, so

dT0X(x, y) = ∥x− y∥ ≤ (1 +K)∥x− y∥

Otherwise, assume x ̸= sy for all s ∈ R and x ̸= 0, y ̸= 0. Define y∗ = ty with t = ∥x∥
∥y∥ .

The geometric configuration ensures

∥x− y∥ ≥ ∥x− y∗∥, ∥x− y∥ ≥ ∥y∗ − y∥

Thus,
(1 +K)∥x− y∥ = ∥x− y∥+K∥x− y∥

≥ ∥y∗ − y∥+K∥x− y∗∥
≥ dT0X(y, y

∗) + dT0X(x, y
∗)

≥ dT0X(x, y)

completing the proof.
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6.2 Reduced Tangent Cones

Definition 6.4. A subset X ⊂ Rn is called subanalytic at x ∈ Rn if there exists an open
neighborhood U of x in Rn and a bounded semianalytic subset S ⊂ Rn × Rm, for some
m, such that

U ∩X = π(S),

where π : Rn × Rm → Rn is the orthogonal projection map.

Definition 6.5. A subset X ⊂ Rn is called subanalytic in Rn if X is subanalytic at each
point of Rn.

Let X ⊆ Rm be a subanalytic set containing the origin.

Definition 6.6. A point x ∈ ∂X ′ is called simple if there exists an open U ⊆ Rm+1

containing x such that
1. The connected components X1, . . . , Xr of (X

′ ∩ U) \ ∂X ′ are topological manifolds of
dimension equal to dimX.
2. For each i, the union (Xi ∪ ∂X ′) ∩ U forms a topological manifold with boundary.
The collection of all simple points in ∂X0 is denoted Simp(∂X, ).

Definition 6.7. We consider the spherical blowing-up at the origin of Rm,

ρm : Sm−1 × [0,+∞) −→ Rm, (x, r) 7→ rx.

For X ⊆ Rm subanalytic with 0 ∈ X, define kX : Simp(∂X0) → N as

kX(x) = number of connected components of ρ−1
m (X \ {0}) ∩ U,

where U is an adequately small neighborhood of x.

Definition 6.8. A subanalytic set X ⊆ Rm with 0 ∈ X is said to have a reduced tangent
cone at 0 if kX(x) = 1 for every x ∈ Simp(∂X0).

Theorem 6.9. If X ⊆ Rm is subanalytic, contains 0, and is Lipschitz normally embedded
at 0, then its tangent cone at 0 is reduced.

Proof. Assume for contradiction that there exists x = (x′, 0) ∈ Simp(∂X ′) ⊆ S0X × {0}
where S0X = T0X ∩ Sm−1 with kX(x) ≥ 2. There exist δ, ε > 0 such that
kX(y) = kX(x) = k for all y ∈ ∂X ′ ∩Bε(x). The set X ′ ∩ Uδ,ε \ ∂X ′ splits into k
components, where

Uδ,ε = {(w, s) ∈ Sm−1 × [0,+∞] | ∥w − x′∥ < ε, 0 ≤ s ≤ δ}

Let X1, X2 be two connected components of X ′ ∩ Uδ,ε \ ∂X ′. Define the conical region

Cδ,ε = {v ∈ Rm \ {0} | ∥v − sx′∥ < sε, 0 < s < δ}
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For each n, we can select xn ∈ ρ(X1), yn ∈ ρ(X2) with ∥xn∥ = ∥yn∥ = tn such that

lim
n→∞

xn
tn

= lim
n→∞

yn
tn

= x′

By taking a subsequence if necessary, we can assume xn, yn ∈ Cδ,ε/2. If γn : [0, 1] → X is a
curve connecting xn to yn, there exists t0 ∈ [0, 1] such that γn(t0) /∈ Cδ,ε, since xn and yn
belong to different connected components of X ∩ Cδ,ε. implying

length(γn) ≥ εtn ⇒ dX(xn, yn) ≥ εtn

However, since X is Lipschitz normally embedded, there exists K > 0 such that

dX(v, w) ≤ K∥v − w∥ ,∀v, w ∈ X

Thus,

K

∥∥∥∥xntn − yn
tn

∥∥∥∥ ≥ ε, ∀n ∈ N

This leads to a contradiction, since

lim
n→∞

xn
tn

= lim
n→∞

yn
tn

Corollary 6.10. If X ⊆ Rm is subanalytic, Lipschitz normally embedded at 0, then T0X
is both reduced and Lipschitz normally embedded.
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7 Lipschitz Knot Theory

A link at the origin of an isolated singularity of a two-dimensional semialgebraic surface
in R4 is a topological knot in S3. We can thus study the overlap of knot theory and
Lipschitz geometry. Specifically, we will state and prove the ’Universality Theorem’ from
[5]

7.1 Concepts

We analyse germs of two-dimensional semialgebraic sets at the origin in R4.

Definition 7.1. Two germs (X, 0) and (Y, 0) are outer bi-Lipschitz equivalent if there
exists a bi-Lipschitz homeomorphism H : (X, 0) → (Y, 0) with respect to the Euclidean
metric. These germs are semialgebraic outer bi-Lipschitz equivalent if the map H can be
chosen to be semialgebraic.

Definition 7.2. The germs are ambient bi-Lipschitz equivalent if there exists a
bi-Lipschitz homeomorphism He : (R4, 0) → (R4, 0) preserving orientation and satisfying
He(X) = Y . Furthermore, the germs are semialgebraic ambient bi-Lipschitz equivalent if
He can be chosen to be semialgebraic.

A fundamental tool in relating local geometry to knot theory is the notion of a link of a
singularity. Intuitively, when one intersects a germ with a small sphere centered at the
singular point, the resulting set captures the topology of the singularity. In the next
definition we formalise the concept of the origin link and, by extension, the tangent link
of a germ.

Definition 7.3. The origin link LX of a germ X is the ambient equivalence class of
X ∩ S3

0,ε for small ε > 0. The tangent link is the origin link of X’s tangent cone.

To connect the study of surface germs with classical knot theory, one may represent a
knot by a smooth semialgebraic circle embedded in S3. However, to probe the structure
of the singularity, we construct a characteristic band. This is an embedded surface that
carries the knot along its boundary. By taking the cone over such a band or its boundary,
we obtain a model of a surface germ that reflects the geometry of the original knot.

Definition 7.4. The knot K is realised as a smooth semialgebraic circle embedded in S3.
Let FK ⊂ S3 be a smooth semialgebraic embedded surface diffeomorphic to S1 × [−1, 1]
with boundary components Ke, K

′
e of the boundary ∂FK isotopic to a knot K and the

linking number of the components Ke and K
′
e is zero. FK is a characteristic band of K.

The cone over FK denoted YK = Cone(FK), and the cone over ∂FK denoted
XK = Cone(∂FK), are called the characteristic cones for K.
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Characteristic band around trefoil knot

Definition 7.5. Let ρ ∈ S1 and l ∈ [−1, 1]. Then (ρ, l) ∈ FK . For an interior point
ξ = (ρ0, 0) ∈ FK , a slice SK is

SK = {(ρ, l) ∈ FK | |ρ− ρ0| ≤ ϵ}

7.2 Universality Theorem

Lemma 7.6. Let X, Y ⊂ Rn be subanalytic sets. If X and Y are bi-Lipschitz
homeomorphic, then there exists a bi-Lipschitz homeomorphism φ : R2n → R2n such that

φ(X × {0}) = {0} × Y

Proof. Let ϕ : X → Y be a bi-Lipschitz homeomorphism. The
McShane–Whitney–Kirszbraun theorem states there exist Lipschitz maps ϕ : Rn → Rn

such that ϕ|X = ϕ and another Lipschitz map ψ : Rn → Rn such that ψ|Y = ϕ−1.
Define φ, ψ : Rn × Rn → Rn × Rn as follows

φ(x, y) = (x− ψ(y + ϕ(x)), y + ϕ(x))

and
ψ(z, w) = (z + ψ(w), w − ϕ(z + ψ(w)))

Since φ and ψ are compositions of Lipschitz maps, they are also Lipschitz maps.
Next, we show that ψ = φ−1. For any (x, y) ∈ Rn × Rn,

ψ(φ(x, y)) = ψ(x− ψ(y + ϕ(x)), y + ϕ(x))

= (x− ψ(y + ϕ(x)) + ψ(y + ϕ(x)), y + ϕ(x)− ϕ(x− ψ(y + ϕ(x)) + ψ(y + ϕ(x))))
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= (x, y + ϕ(x)− ϕ(x))

= (x, y)

Similarly, for (z, w) ∈ Rn × Rn,

φ(ψ(z, w)) = φ(z + ψ(w), w − ϕ(z + ψ(w)))

= (z + ψ(w)− ψ(w − ϕ(z + ψ(w))) + ϕ(z + ψ(w)), w − ϕ(z + ψ(w)) + ϕ(z + ψ(w)))

= (z + ψ(w)− ψ(w), w)

= (z, w)

Thus, ψ = φ−1. Finally, it is clear that φ(X × {0}) = {0} × Y .

Theorem 7.7 (Sampaio’s Theorem). Let X, Y ⊂ Rm be subanalytic sets. If the germs
(X, x0) and (Y, y0) are bi-Lipschitz homeomorphic, then (Tx0X, x0) and (Ty0Y, y0) are also
bi-Lipschitz homeomorphic.

Proof. We can assume that x0 = y0 = 0. By Lemma 7.6, we can suppose that there exists
a bi-Lipschitz map φ : Rm → Rm such that φ(X) = Y . Let K > 0 be a constant such that

1

K
∥x− y∥ ≤ ∥φ(x)− φ(y)∥ ≤ K∥x− y∥, ∀x, y ∈ Rm

Let ψ = φ−1. We define two sequences of maps: for each n ∈ N, we define the mappings
φn : Bm

1 → Rm and ψn : Bm
K → Rm by

φn(v) = nφ
(v
n

)
, ψn(v) = nψ

(v
n

)
We note that for any n ∈ N, we have

1

K
∥u− v∥ ≤ ∥φn(u)− φn(v)∥ ≤ K∥u− v∥, ∀u, v ∈ Bm

1

and
1

K
∥u− v∥ ≤ ∥ψn(u)− ψn(v)∥ ≤ K∥u− v∥, ∀u, v ∈ Bm

K

Then, by the Arzelà–Ascoli theorem, there exists a subsequence {nj} ⊂ N and mappings
dφ : Bm

1 → Rm and dψ : Bm
K → Rm such that φnj

→ dφ and ψnj
→ dψ uniformly as

j → ∞. Clearly,
1

K
∥u− v∥ ≤ ∥dφ(u)− dφ(v)∥ ≤ K∥u− v∥

and
1

K
∥z − w∥ ≤ ∥dψ(z)− dψ(w)∥ ≤ K∥z − w∥

Let U = dφ(Bm
1 ). dφ is a continuous and injective map so U is an open set.

Let v ∈ T0X ∩Bm
1 and define w = dφ(v) = limj→∞

φ(tjv)

tj
with tj =

1
nj
.
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∥dψ(w)− v∥ =

∥∥∥∥ limj→∞

ψ(tjw)

tj
− v

∥∥∥∥
= lim

j→∞

∥∥∥∥ψ(tjw)tj
− tjv

tj

∥∥∥∥
= lim

j→∞

1

tj
∥ψ(tjw)− tjv∥ = lim

j→∞

1

tj
∥φ−1(tjw)− φ−1(φ(tjv))∥

≤ lim
j→∞

K

tj
∥tjw − φ(tjv)∥ ≤ lim

j→∞
K

∥∥∥∥w − φ(tjv)

tj

∥∥∥∥
= 0.

Thus, dψ(w) = dψ(dφ(v)) = v for all v ∈ Bm
1 , i.e., dψ ◦ dφ = idBm

1
and similarly,

dφ ◦ dψ|U = idU .
Let v ∈ T0X ∩Bm

1 , then there exists α : [0, ε) → X such that α(t) = tv + o(t). Using the
facts that φ(α(t)) ∈ Y for all t ∈ [0, ε) and φ is Lipschitz, we have

φ(α(t)) = φ(tv) + o(t).

By definition of dφ,

φ(tjv) = tjdφ(v) + o(tj),

thus

dφ(v) = lim
j→∞

φnj
(v) = lim

j→∞

φ(tjv)

tj
= lim

j→∞

φ(α(tj))

tj
∈ T0Y.

Therefore, dφ(T0X ∩Bm
1 ) ⊂ T0Y .

Similarly, we have dψ(T0Y ∩ U) ⊂ T0X.
Thus, dφ : T0X ∩Bm

1 → T0Y ∩ U is a bi-Lipschitz map.

Definition 7.8. Let β > 1 be a rational number. For a fixed t ≥ 0, define Z =
⋃

t≥0 Zt

where Zt = {(x, y) ∈ R2 | |x| ≤ t, |y| ≤ t} Let W+
t be the subset of Zt bounded by the line

segment I+t = {(x, y) | |x| ≤ t, y = t} and the union J+
t of the two line segments

connecting the endpoints of I+t with the point (0, tβ). Define
W−

t = {(x, y) | (x,−y) ∈ W+
t } and similarly, J−

t = {(x, y) | (x,−y) ∈ J+
t }. We set

Wt = W+
t ∪W−

t and let W =
⋃

t≥0Wt ⊂ R3. We define a β-bridge as the surface germ

Bβ =
⋃

t≥0(J
+
t ∪ J−

t ). We see that the tangent cone of W is the set {|x| ≤ |y| ≤ z} and
the tangent cone of Bβ is the surface germ {|x| = |y| ≤ z}.
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Theorem 7.9 (Universality Theorem). Let K ⊂ S3 be a knot. Then one can associate to
K a semialgebraic one-bridge surface germ (XK , 0) in R4 so that the following holds:

1. The link at the origin of each germ XK is a trivial knot;

2. All germs XK are outer bi-Lipschitz equivalent;

3. Two germs XK1 and XK2 are ambient semialgebraic bi-Lipschitz equivalent only if
the knots K1 and K2 are isotopic.

Proof. Let FK ⊂ S3 be a characteristic band for the knot K, with characteristic cones
Y K = Cone(FK) and XK = Cone(∂FK). Let SK ⊂ FK be a slice. Define the
semi-algebraic bi-Lipschitz homeomorphism

φK : SK → Z1 = {(x, y) ∈ R2 | |x| ≤ 1, |y| ≤ 1}, (ρ, l) 7→
(
ρ− ρ0
ϵ

, l

)
Let MK = {tσ | t ≥ 0, σ ∈ SK} be the cone over SK . We define the bi-Lipschitz
homeomorphism

ΦK :MK → Z ⊂ R3, ΦK(tσ) = tφK(σ), σ ∈ SK

Define VK = Φ−1
K (W ) for W ⊂ R3, and construct

YK = (Y K \MK) ∪ VK , XK = ∂YK

Here, XK is a one-bridge surface germ where a β-bridge Bβ replaces part of the surface
germ XK inside MK .
1. The link at the origin of XK bounds the closure of FK \ SK , which is a homeomorphic
to a disk and is therefore a trivial knot.
2. For knots K1, K2, define a semialgebraic bi-Lipschitz map

Ψ : Y K1 → Y K2 , (ρ, l, t) ∈ Y K1 7→ (ρ, l, t) ∈ Y K2 .

We have Ψ(MK1) =MK2 . By definition of ΦK1 ,ΦK2 we have that Ψ(YK1) = YK2 and that
Ψ(XK1) = XK2

3. For any knot K, the link of the tangent cone T0XK of the set XK is the union of two
knots isotopic to K, with a single common point. Therefore, if the knots K1 and K2 are
not isotopic, then the tangent cones T0XK1 and T0XK2 are not ambient topologically
equivalent, a contradiction to Sampaio’s theorem (Theorem 7.7). In our case, the links of
the tangent cones are not even ambient topologically equivalent.
Thus, Universality Theorem holds.
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Remark 7.10. Even though each XK has a topologically trivial link at the singular
point, the ambient Lipschitz geometry of XK encodes the full knot type of K. All XK

share the same outer conical geometry, but no two of them can be mapped onto each
other by an ambient bi-Lipschitz homeomorphism unless the underlying knots are
equivalent. This fact means that any knot invariant can, in principle, be detected from
the Lipschitz geometry of the corresponding surface germ.

Example 7.11 (Trefoil Knot vs. Unknot). To illustrate Universality Theorem, consider
K to be the trefoil knot and let K ′ be the unknot. By the construction in the theorem,
we obtain two one-bridge surface germs (XK , 0) and (XK′ , 0) in R4. Both germs have a
link at the origin which is an unknot by condition (1) above. In fact, XK and XK′ are
indistinguishable from the outside, they are outer bi-Lipschitz equivalent by condition (2).
However, since the trefoil K is not isotopic to the unknot K ′, condition (3) guarantees
that there is no ambient bi-Lipschitz homeomorphism of R4 taking XK to XK′ . Thus, the
ambient Lipschitz geometry successfully distinguishes a trefoil from an unknot.
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